Air Resistance: Background

June 7, 2005

All right, now that you've played with the applet here is a sheet that

1. helps clear up whatever confusion still lingers, and

2. lets you know what the lab intended for you to learn.

Having said that, here are a few conventions: the coordinates are fixed so
that y is up and X is to the right. The applet runs the equations of motions
for an object with some fixed size and shape, but variable mass (m). You were
allowed to hurl it with whatever initial speed you wanted (vg), at some angle
(0) between 0° and 90°. You were also allowed to toggle air resistance on or
off. When you fiddled with the mass of the object with the air resistance off
nothing changed, right? Let’s figure out why this might be. Remember that
near the earth, gravity is a force (field) that causes constant acceleration. In
our coordinates, ax = 0 and ay, = —g. With this in mind, Newton’s law tells
us immediately why mass doesn’t affect motion of an object due to gravity
alone. Observe:
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In other words, a = g. This result is good, since you probably don’t recall
seeing m in any of the constant acceleration equations of motion...



Calculus Interlude

Let’s sneak in a little calculus :) To get position from acceleration we need
to integrate both sides of the equation twice; once turns acceleration into
velocity, once more turns velocity to position. First, let’s do the components
along x:

where C' is a constant. Now,
[osttrde = m 3)
cdt = Ct+D (4)

where D is a constant and py(t) is the position of the object along x at the
time t. Integrals generate these pesky undetermined constants. Not to fear
though! We have all of the info we need to figure out what they are. To
be more specific, we know everything about our projectile at time t = 0.
The x-velocity, vx(0) is vgcosf. This means that C' = vy cos @ in equation
2. Next, we know that py(0) = x¢. This means that D = x in equation 4.
Written all together we have the familiar equation

px(t) = Ct+D
= (vgcosO)t + xg.

Now let’s do the y components. Here we have:
ay = —g
[atyae = w 6

/—gdt = —gt+A (6)



where A is a constant. Moving right along,
[wtd = no )

/(—gt+A)d = /—gtd+/Ad (8)

1
= —§gt2—|—At+B

where B is a constant and py(t) is the position of the object along y at the
time ¢. Just like with the x components, we know that vy (0) = v siné and
py(0) = yo. Together these mean that A = vsinf in equation 6 and B = y,
in equation 9. Thankfully, this gives us

1
py(t) = —égt2 + At + B

1
— —Egt2 + (vosin @)t + o
and we no longer have to take any book’s word for it! These are (not surpris-
ingly) referred to the equations of motion for the projectile and we obtained
them from Newton’s law.

Air Resistance

The applet lab was asking a lot of you when it tried to have you figure out
what the force from air resistance ‘looked’ like with only your own experience
and the applet to refer to. For reference, figure 1 shows some results from
the applet. As it turns out, the drag force (resistance to the motion of a
body through some fluid, like air) depends on several things. Here are some
steps to help figure out just what those things might be.

First off, let’s do some experiments (or at least do them in our head).
When we do this, the idea is to try and change only one thing at a time
so that we can sort out the effect of many different factors. Let’s start
with speed. This seems like a good place to begin since experience says you
wouldn’t feel any drag force when sitting on a motorcycle in the driveway,
but certainly would driving on the highway.
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Figure 1: Results from the projectile motion applet for a fixed angle and
initial velocity. Can you deduce what was changed (and how) between the
curves?

As you might have guessed, the drag force (lets call it f'd) must depend
on the velocity of the projectile. When we say wvelocity we really mean the
full vector welocity and not just speed. Think of your flat hand hanging
out the window of a car moving 30 mph forward (We don’t actually suggest
doing this). If you didn’t hold your hand still it would get pushed backwards
right? If the car was moving at 80 mph it would get pushed even harder,
right? (Aside: you’d know this because, your muscles would have to work
harder to provide enough force to keep your hand still, just like Newton’s
Third Law states). Similarly, if the car was moving in reverse at 80 mph (not
recommended!), the direction of the force on your hand would change. Now
since a change in velocity immediately results in a change in the drag force,
it is the instantaneous velocity that we are talking about here.

What if we change the fluid? As another example, think of moving your
hand with palm open under water: the same principles apply. Although, now
there is a difference. Is it harder or easier to move your hand under water vs.
waving it through the air? The answer is most definitely harder (meaning
it takes more force to move my hand underwater than at the same speed as



through the air). This might make you conclude that the density of the fluid
has something to do with the drag force, recalling that water is more dense
than air.

What else haven’t we tried changing? Well, one thing is the shape of the
object. Back to you in the car with your arm sticking out: Is the force greater
on your closed fist or your open hand at a given velocity? Any difference here
suggests that the frontal area of the object (how ‘big’ it is looking down the
direction of its motion) affects the drag force.

Now what about mass? In the applet, changing the mass certainly makes
a difference in the motion of the projectile with air resistance on. But does
the drag force depend on the mass? We know that the force of gravity does...
To clarify, let’s look at Newton’s law:
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= mg+f'd.

We've deduced that £ is proportional to at least v, the fluid density, p and
the surface area, A;. That means it might look something like f¢ = —pA V.
If we check quickly, this force is in the right direction (opposite v) and gets
bigger as each v, p and Ay get bigger. There’s one minor problem though.
We don’t know exactly how big fe will be in magnitude for values of p, Ay
and v. Luckily, there’s a quick fix: we let the whole expression be scaled (i.e.
multiplied by) another unknown positive constant. Let’s call that constant
k. Why positive, you ask? Well, if we let k be negative, then that would
change the direction of the drag force...and we don’t want to do that. Now
our model for the drag force looks like

f4 = —kpA,v.

and

Zf‘:mﬁ

= mg — kpAsv.



The free body diagram looks something like:

(9)

Now if the drag force was proportional to the mass as well, then it would
disappear from the equation for the acceleration (check by sticking m in the
numerator of the drag part of 9)! Well, this is not what we see in the applet
(or real life for that matter). The conclusion is that the drag force doesn’t
seem to depend on mass...at least it’s definitely not proportional to the mass
of the object. As it turns out, we can’t say any more than this just from
playing with the applet (tricky, but not a trick!). So how can we be sure that
drag doesn’t depend on the projectile’s mass at all? Here’s another thought
experiment for you: If you have a ping pong ball and a solid ball of the same
size, would the drag force be the same on them? The key here is to do an
experiment that isolates the drag force from the motion.

From what we’ve discussed here at least, we're left with a drag force that is
proportional to the velocity and frontal area of the projectile, and the density
of the fluid it’s moving through. The velocity is the only thing we can really
change in the applet that affects the drag force, however. Remember that
in the applet we are watching the motion of the projectile, which includes
the effects of both the drag and gravitational forces together. Changing the
mass is changing the motion, but not the drag force.

And that’s all for now...



